Posted in: information

Academician wangyifang:current situation and future development of China’s major scientific and technological infrastructure

1、 Connotation and classification of major scientific and technological infrastructure

National major scientific and technological infrastructure, sometimes referred to as big scientific devices, refers to large-scale complex scientific research devices or systems that are planned by the state, built by high-level innovation subjects, and open to the society in order to improve the ability to explore the unknown world, discover natural laws, and realize scientific and technological change. They are national public facilities that provide long-term operation services for high-level research activities and have great international influence. According to different purposes, major scientific and technological infrastructure is generally divided into the following three categories:

The first is special facilities, which are research devices built for major scientific and technological goals in specific disciplinesSuch as the Beijing Positron Collider, the superconducting tokamak nuclear fusion experimental device, the high altitude cosmic ray observatory,”China’s celestial eye”, Wuhan National biosafety laboratory, etc. The special facilities have clear and specific scientific objectives, pursue the forefront of international basic scientific research, and the research content and scientific user groups relying on the facilities are also relatively specific and concentrated.

The second is the public experimental platform, which mainly provides a supporting platform for basic research and applied research in multidisciplinary fieldsFor example, Shanghai light source, China spallation neutron source, strong magnetic field experimental device, etc. Such devices provide experimental platforms and testing means for a large number of unspecified users in many fields, provide key support for relevant basic scientific research and applications, and pursue to meet user needs and provide comprehensive and complete services.

The third category is public welfare infrastructure, which mainly provides basic data and information services for economic construction, national security and social developmentIt belongs to non-profit and social public welfare facilities, such as China remote sensing satellite ground station, long and short wave timing system, southwest wildlife germplasm resource bank, etc., and seeks to meet the needs of the state and the public.

Major scientific and technological infrastructure is an important part of national infrastructure, but it is different from general infrastructure projects. It has distinct dual attributes of science and engineering. Its design, development and related technologies and processes are comprehensive, complex, progressiveness, and sometimes unique. Knowledge innovation and scientific achievements are fruitful, and the benefits of technology spillover and talent accumulation are very significant, Therefore, it often becomes the core element of the national innovation highland. At the same time, it is also different from the general scientific research instrument center or platform. It needs to design and develop special equipment by itself. It is large in size, large in investment, strong in capacity, complex and advanced in technology, long in life cycle, has a clear scientific goal, reflects the national will, reflects the national needs, and is a”national important tool” and”scientific and technological weapon”. It needs the national overall planning, unified layout, unified construction, overall operation and opening. Major scientific and technological infrastructure also represents the image of the country and is an important symbol of the country’s scientific and technological strength, economic strength and even soft power. In 1969, Fermilab applied for the construction of the proton main ring accelerator. Robert Wilson, the director of the laboratory, was asked in Congress about the role of building the accelerator in national defense. He replied,”doing this is not only of great significance to basic research, but also can make this country more worthy of protection”.

2、 Development trend of major international scientific and technological infrastructure

Internationally, major scientific and technological infrastructure construction originated in the United States during World War II and has a history of more than 80 years. For a long time, major developed countries and emerging economies such as Europe, America and Japan have attached great importance to the construction and development of major scientific and technological infrastructure, regarded it as the core competitiveness of their own science and technology, continued to increase investment, strengthened facility construction and strategic layout, and maintained, cultivated and developed leading advantages.

The United States has deployed a number of large-scale facilities with leading performance in the fields of high-energy physics, nuclear physics, astronomy, energy, nanotechnology, ecological environment, information technology and so on, which are mainly funded and managed by the Department of energy, the National Science Foundation and other departments. According to statistics, there are about 60, such as advanced photon sources and their upgrades (APS, which operated in 1996 and completed the upgrade in 2022) The laser gravitational wave observatory and its many upgrades (LIGO, operated in 2002 and completed in 2015), advanced seismological facilities (Sage, operated in 2014), Weber Space Telescope (JWST, launched in 2021), large integrated Sky Survey Telescope (LSST, planned to operate in 2022), deep earth neutrino experiment (dune, planned to be completed in 2026), etc., have made a series of major scientific achievements and breakthroughs in related core technologies, such as the discovery of gravitational waves, It has played an important role in scientific and technological innovation, national security and sustainable economic and social development of the United States, and consolidated its position as the world’s number one scientific and technological power.

Europe, represented by Britain, France and Germany, also has a large number of research facilities in the fields of energy, life, resources and environment, materials, space, astronomy, particle physics and nuclear physics, engineering technology and so on. According to incomplete statistics, there are more than 40 in Britain, more than 60 in Germany and nearly 60 in France. In addition, in order to integrate resources and improve overall competitiveness, EU countries have also jointly built a number of internationally leading large-scale research facilities, such as the European Synchrotron Radiation Facility (ESRF, which was operated in 1994, upgraded in 2015, and the new upgrade is completed this year), the Large Hadron Collider (LHC, which was operated in 2008 and is being upgraded), the very large Survey Telescope (VST, which was operated in 2011), the European free electron laser (exfel, which was operated in 2017) European spallation neutron source (ESS, planned to operate in 2025) and others have made a series of major scientific achievements such as the discovery of Higgs particles, invented www web technology, and gave birth to the Internet economy. These facilities not only maintain Europe’s leading edge in science and technology in related fields, but also promote global economic and social development, promote peace and cooperation between European countries, improve the share of the technology market, and win the initiative for Europe to occupy a high position in the global supply chain and industrial chain.

3、 Development history of major scientific and technological infrastructure construction in China

The construction of major scientific and technological infrastructure in China started in the 1960s. Over the past 60 years, it has gone through a difficult process from scratch, from small to large, from tracking and imitation to independent innovation. At present, the technical level and performance of facilities have been continuously improved, and the discipline field and regional layout have been continuously optimized, which reflects the great progress and achievements in the development of science and technology in China. The following is an introduction from four development periods.

(1) The embryonic period of the 1950s and 1960s

After the founding of new China, China promulgated the first scientific and technological development plan in December 1956 – the outline of the long-term plan for scientific and Technological Development from 1956 to 1967. Under the guidance of this plan, around the development of”two bombs and one satellite”, the state has built some research facilities, such as ignition neutron source, experimental heavy water reactor, material test reactor, particle accelerator, etc. Although these can not be regarded as”big scientific devices”, they are the seeds of major scientific and technological infrastructure. In the 1960s, China’s scientific community began to incubate basic research facilities. With the support of the State Planning Commission and other departments, it deployed and started the pre research work of high-energy accelerators, short wave timing, 2.16-meter astronomical telescopes and other devices. On this basis, the long and short wave time service station built in the 1960s can be said to be the first large scientific device in China.

(2) The growth period in the 1970s and 1980s

After the reform and opening up, the demand for science and technology has increased sharply with economic construction as the center. Comrade Deng Xiaoping put forward the strategic thought that”science and technology are productive forces” at the National Science Conference, and China has entered the”spring of science”.

In January, 1979, Comrade Xiaoping visited the United States and signed the Sino US intergovernmental agreement on science and technology cooperation with President Carter in Washington, D.C., based on which 34 cooperation protocols or memoranda in the fields of high-energy physics were signed. In December, 1983, Comrade Xiaoping personally approved the construction of the Beijing Electron Positron Collider, and the Central Secretariat decided to include it in the national key project. On October 7, 1984, the project broke ground at the Institute of high energy physics, Chinese Academy of Sciences, and Comrade Xiaoping personally visited the site to lay the foundation for the project. On October 24, 1988, Comrade Xiaoping personally attended the completion ceremony of the collider. Attending the foundation laying and completion of a project twice shows that Comrade Xiaoping attaches great importance to and cares for major national scientific and technological infrastructure. It was also at the completion ceremony that he delivered a far-reaching and important speech:”China must develop its own high-tech and occupy a place in the world’s high-tech field in the past, today and in the future.”

The completion of the Beijing Electron Positron Collider is an important milestone in the construction of China’s major scientific and technological infrastructure. During this period, with the support of the State Development Planning Commission, China remote sensing satellite ground station, tandem accelerator, Hefei synchrotron radiation device, Dongfanghong 2 Marine Integrated Survey Ship and other facilities were successively completed, and the construction of facilities began to expand to multidisciplinary fields.

(3) Development period after 1990s

Since the 1990s, China’s economic construction has developed rapidly, and the state has put forward the development strategy of rejuvenating the country through science and education. With the support of the State Development Planning Commission, a new batch of facility projects, such as GuoShouJing telescope, superconducting tokamak nuclear fusion experimental device, and China crustal movement observation network, have been launched.

After the”Eleventh Five Year Plan”, the state took the construction of major scientific and technological infrastructure as an important measure to enhance innovation capacity, and formed a system to promote the construction according to the five-year plan. During the”Eleventh Five Year Plan” period, spallation neutron sources started construction, passed the national acceptance in 2018, and were put into operation. This is the fourth spallation neutron source in the world, filling the gap of domestic pulsed neutron source. The more well-known”Chinese heavenly eye” is also under construction during the”Eleventh Five Year Plan”. Through a number of independent innovations, the National Observatory of the Chinese Academy of Sciences has built the world’s largest single aperture (500 meters) and most sensitive radio telescope. At this stage, with the support of the national development and Reform Commission, the construction of strong magnetic field experimental devices, icing wind tunnels and other facilities has also started one after another, the level of facility construction and opening-up and sharing has been greatly improved, and the scientific research output capacity has been continuously improved. The high-level completion of Shanghai light source marks China’s entry into the world-class synchrotron radiation light source club.

(4) The rapid development period since the 18th CPC National Congress

In 2013, as the general secretary, he inspected the scientific and educational units. The first stop was the Beijing positron collider of our Institute of high energy physics. That is, during this inspection, he put forward the goal of”four pioneers” to the Chinese Academy of Sciences. In September 2016, the general secretary sent a congratulatory letter for the completion and use of the”heavenly eye”, requiring high-level management and operation of this major scientific infrastructure to produce early, more and better results成果、出大成果。这不仅是对“天眼”提出的要求,也是对所有重大科技基础设施提出的要求。2021年2月,总书记还在贵阳亲切会见项目负责人和科研骨干,视频连线装置现场,亲切慰问科研人员,听取建设历程、技术创新、科研成果、国际合作等情况介绍,指出“天眼”是国之重器,实现了我国在前沿科学领域的重大原创突破。

这一阶段,我国对重大科技基础设施进行了前瞻部署和系统布局,投入力度持续加大。在国家发展改革委的规划组织和投资支持下,“十二五”期间,我国启动建设了高海拔宇宙线观测站、高效低碳燃气轮机试验装置等15项重大科技基础设施;“十三五”期间,在基础科学、能源、地球系统与环境、空间和天文以及部分多学科交叉领域,启动建设了高能同步辐射光源、硬X射线自由电子激光装置等9项设施。这两个五年计划,累计项目数接近此前建设总数。根据国家发展改革委的规划,“十四五”期间,拟新建20个左右国家重大科技基础设施,在数量和质量上有新的跃升。我国重大科技基础设施建设迎来了实现历史性跨越的快速发展期。

目前,我国在建和运行的重大科技基础设施项目总量达57个,部分设施综合水平迈入全球“第一方阵”。中科院是我国重大科技基础设施建设的最早发起者,也是设施建设和运行的主要力量,一代又一代科学家和工程技术人员,为此付出了长期艰苦的努力,做出了许多重大卓越的贡献。目前,共承担建设和运行重大科技基础设施30余项,超过全国的一半。中科院与国内科教界广泛合作,开展规划和建设,已建成运行的设施更面向国内外开放,吸引广大科研人员充分利用设施开展科学研究。在包括重大科技基础设施在内的大型科研设施和仪器设备开放共享方面,在财政部、科技部组织的评估中,中科院长期在全国科教单位中排名第一。当然,高校和其他有关科研单位也承担了很多重大科技基础设施建设任务,同样做出了重要贡献。

四、我国重大科技基础设施建设运行成效

几十年来,在国家有关部门的统一部署下,我国重大科技基础设施布局逐步完善、运行更加高效、产出更加丰硕,对促进我国科学技术事业发展起到了巨大的支撑作用,为解决国家发展中遇到的关键瓶颈问题做出了突出贡献,其技术溢出也显著促进了经济社会发展,并依托设施逐步形成了一批在国际上有重要影响的国家科技创新中心和人才高地。主要成效可以概括为以下几个方面:

(一)原创性引领性科技成果的策源地

重大科技基础设施为开展基础研究和应用研究提供了重要平台,推动我国粒子物理、凝聚态物理、天文、空间科学、生命科学等领域部分前沿方向的科研水平迅速进入国际先进行列。2011年以来,依托重大科技基础设施产生的成果就有22项入选国家科技“三大奖”,其中9项国家自然科学奖、3项国家技术发明奖、10项国家科学技术进步奖。总计29项成果入选年度“中国十大科技进展新闻”或“中国科学十大进展”,占上榜成果的13.2%。

一些成果更是在国际上产生了重大影响力。例如,大亚湾反应堆中微子实验发现了一种新的中微子振荡,并精确测量到其振荡几率。该结果是对自然界最基本物理参数的测量,对未来中微子物理的发展方向起着决定性作用。高海拔宇宙线观测站在银河系内发现大量超高能宇宙加速器,并记录到最高1.4拍电子伏伽马光子,这是人类观测到的最高能量光子,突破了人类对银河系粒子加速的传统认知,开启了“超高能伽马天文”的时代,为破解“宇宙线起源和加速”这一世纪之谜奠定了基础。快速射电暴起源是当今天体物理领域最前沿的科学问题之一,我国科学家利用“慧眼”卫星精准定位了快速射电暴对应的x射线天体,利用“中国天眼”第一次捕捉到了快速射电暴多样化的偏振信息,揭示了快速射电暴的来源和辐射机制之谜。超导托卡马克核聚变实验装置实现了可重复的1.2亿度101秒等离子体运行,再次创造托卡马克实验装置运行新的世界纪录,标志着我国在稳态高参数磁约束聚变研究领域引领国际前沿。

(二)解决国家重大战略科技问题的主平台

重大科技基础设施在解决重点领域和战略产品“卡脖子”问题等方面发挥了重要作用,推动解决了一批关键核心技术、引领带动了相关产业发展。众所周知,航空发动机核心部件——叶片的服役寿命,一直是制约我国航空领域发展的“卡脖子”问题,过去一直缺乏合适的检测手段,因中子不带电、穿透性强,可以在叶片等大型部件的内部结构和应力探测方面发挥独特优势。通过中国散裂中子源,科研人员首次获得了多种型号发动机的高温合金叶片、单晶叶片、3D打印叶片在不同工艺、不同服役状况下的内部应力数据,填补了国内深层高精度应力测试与评价的空白,支撑解决国产叶片的材料设计、制备和加工工艺。

2020年初,新冠肺炎疫情暴发之初,武汉国家生物安全实验室,也就是我们通常说的武汉P4实验室,在世界上首次检测出新冠病毒全基因组序列,首次分离出病毒毒株,为全球科学家开展药物、疫苗、诊断研究提供了重要基础。同时,该实验室在新冠病毒病原鉴定、快速检测、抗病毒药物筛选、疫苗研制等重要工作中也做了很多非常重要的工作,为抗击新冠肺炎做出了不可替代的贡献。

(三)推动战略性高技术发展的新引擎

重大科技基础设施技术溢出效应大幅提升,催生一批新技术、新产品,成为促进战略性新兴产业的科技创新驱动力,为国民经济和社会发展提供了科技支撑。

比如,我国第二代中微子实验——江门中微子实验的核心部件叫做光电倍增管,之前几乎全部由日本公司垄断,对中国科学家来说自主生产这一核心器件,在十几年前还只是一个大胆的设想。2008年,中科院高能所提出全新设计方案,2011年联合北方夜视等国内企业组成产学研合作组,成功研制出20英寸微通道板型光电倍增管,综合性能达到国际先进水平,打破了国际垄断。2020年,15000只国产20英寸光电倍增管生产完成,将使用在江门中微子实验中。仅这一项,就比采购国外设备节省数亿元。该产品也成为“高海拔宇宙线观测站”的核心部件,让观测设备更加“耳聪目明”。

再比如,癌症是当今社会对人类生命健康威胁最大的疾病之一。中科院近代物理所依托兰州重离子研究装置,于2021年实现我国首台医用重离子加速器——碳离子治疗系统的成功应用,使人类向攻克癌症又迈进了一步。这标志着我国成为全球第四个拥有自主研发重离子治疗系统和临床应用能力的国家,实现我国在大型医疗设备研制方面的历史性突破。

(四)打造国家创新高地的强内核

近年来,有关部门将重大科技基础设施作为国家创新高地建设的核心内容,加快推动北京、上海、粤港澳大湾区科技创新中心建设。特别是依托设施集群,建设上海张江、安徽合肥、北京怀柔和粤港澳综合性国家科学中心。这一战略举措不仅加快了重大科技基础设施的建设,也显著提升了这些国家创新高地的科技实力和创新能力。据不完全统计,“十二五”和“十三五”期间规划布局的24个装置中有15个项目整体或部分在综合性国家科学中心集聚,涉及总投资300多亿元。

同时,重大科技基础设施有很强的外部辐射效应,不仅能显著提升所在区域的科技实力和创新能力,而且有利于提升所在区域的人才环境和形象,吸引大批高端人才和企业,持续支撑和促进地方经济社会发展。比如,散裂中子源落户广东东莞,显著改善了当地的人才环境,促进了高端产业落户,对东莞及大湾区的产业转型升级和经济发展起到了积极作用。正因为如此,许多地方党委政府都非常重视争取设施落户,对设施建设和运行给予大力支持。借此机会,我们也向有关地方的领导表示衷心感谢!

(五)引才聚才和推动高水平创新合作的新高地

重大科技基础设施在建设和运行过程中,集聚和培养了一大批懂科学、懂技术、懂工程、懂管理的领军人才,建成后还依托设施吸引大批高水平国内外人才开展科学研究和科技合作。以落户东莞的中国散裂中子源为例,中科院高能物理所在当地集聚和培养了一支400多人的高水平工程和科研团队及大批青年学生,包括有着丰富设施建设与开放运行经验的战略科学家,以及在专业领域颇有建树的学科领军人才和蓬勃奋进的青年科学家。散裂中子源的高度开放共享,也吸引了大批国内外的用户,包括科学家和工程技术人员开展科学研究和技术攻关。据统计,2018年以来,散裂中子源注册用户超过2600人(包括国外用户40余人),共完成600余项课题,有力推动了我国中子散射应用和关键技术的重大发展。

五、我国重大科技基础设施建设的差距和不足

在充分肯定成绩的同时,我们也清醒地认识到,由于我国的设施建设起步相对较晚,技术储备和人才队伍尚有不足,科技水平和产出效率还需提高,管理体制机制有待优化,对更高水平原始创新和核心技术产出的支撑作用亟待提升,整体水平与建设科技强国和高水平自立自强的目标要求还有较大差距。

(一)世界领先、甚至独创独有的设施还不多

当前,国际科技竞争空前激烈,世界科技强国经过长期积累,已经拥有相当规模、有重要影响力的重大科技基础设施。我国的重大科技基础设施建设在起步相对较晚、财力相对有限、水平相对不高的情况下,大多以跟踪模仿和追赶西方发达国家为主。近年来,我国陆续建设了“天眼”、全超导托卡马克聚变反应堆、高海拔宇宙线观测站、高能同步辐射光源、江门中微子实验等一批处于国际领先水平的设施。但总的来说,具备原创科学思想和科学设计、世界领先甚至独创独有的重大科技基础设施数量还很少;关键技术的源头主要来源于国外,性能指标还常常有差距。面对科学前沿研究不断向超微观、超宏观、超复杂方向发展的趋势,我们尤其需要加强战略研究,瞄准世界一流,高水平、高起点、有重点地选择建造一批国际领先的重大科技基础设施,以点带面,逐步实现从“占有一席之地”、到重点突破、再到引领创新的战略目标。

(二)依托设施的建制化研究有待加强

建设高水平、引领型的重大科技基础设施固然重要,但是运行好、使用好这些设施,发挥最大效益也很重要。我国重大科技基础设施不断推进开放共享,吸引了大批高水平用户开展科研工作,但我们也发现在公共实验平台类的设施上,科研用户自发申请使用设施,围绕国家紧迫的战略需求、开展定向性科学问题牵引的建制化研究不多,从而制约了依托设施开展高水平科学研究、产出重大原创成果、解决关键核心技术问题的能力。

(三)依托设施的国际合作程度不够

重大科技基础设施是国际合作的重要平台。我国重大科技基础设施在国际合作上还存在不足。一方面,我国主持的本土项目国际合作比重较低,且大部分停留在一般性的交流合作上,缺少实质性的外方经费投入和人员、技术贡献,导致我国专用研究设施国际领先性、国际影响和重大成果产出不足。另一方面,我国也较少实质性地、有显示度地参加别国的项目,国际影响不足,不易达到国际领先水平,也影响我们吸引国外投入参与本土项目。

当前,美西方少数国家对我国的科技遏制和封锁持续升级,加上新冠肺炎疫情的影响,国际科技合作面临严峻挑战。重大科技基础设施在突破封锁、吸引合作,特别是开展科学家之间的科研合作、互通有无、进行深度科技交流合作上,具有独特优势,可以发挥更大的作用。

六、我国经济社会发展和科技自立自强的新形势、新要求

“十四五”是开启全面建设社会主义现代化国家新征程的第一个五年。作为国家创新体系的重要组成部分,我国重大科技基础设施建设发展面临着新的形势和要求。

从新科技革命的历史机遇来看。现阶段我国建设科技强国的进程正好与知识经济演进中正在产生并日渐加速的新一轮科技革命相伴。科学研究的发展不断向广度拓展、向深度进军,多学科交叉融合汇聚日益频繁,重大创新突破需要依赖科学仪器来拓展人类的感知能力,必须依靠精度更高、功能更强的仪器设备,直至大科学装置。这就对装置的能力和水平提出了更高要求。

从深刻复杂多变的国际形势来看。设施建设集科学技术、工业制造、材料加工、人才队伍优势于一体,代表了一个国家的综合科技实力。因此,各国都将设施的发展作为提升国家核心竞争力的重要举措,加强部署并大力实施。国家发展的激烈竞争也使设施的竞争日益激烈,在重大科技基础设施领域既要合作,也有竞争,各种困难交织,对我国设施的建设和未来发展提出了新的挑战。

从我国加快建设科技强国战略目标来看。以习近平同志为核心的党中央高度重视科技事业,确立了加快建设科技强国、实现高水平科技自立自强的战略目标。这就要求我国重大科技基础设施发展要加速,只有加速才能实现从跟跑、并跑向领跑的转变,才能为原始创新和关键技术攻关提供更强力的支撑。

新时代赋予新使命,内外因素叠加,对我国的设施建设提出了更高、更急迫的要求——要尽快建成布局完备、技术领先、运行高效、创新有力、综合效应显著的国家重大科技基础设施体系,设施建设水平、运行服务能力和重大成果产出要实现国际引领,以全面支撑原始创新能力提升、战略高技术研发、产业创新发展、区域创新高地建设,实现跻身创新型国家前列和世界科技强国的目标。

七、几点思考和建议

(一)要强化顶层设计,优化管理

当前,我国的科技发展面临着多处被“卡脖子”的被动局面,只有集中力量,发挥优势,才能实现重点突破,争取能“互卡脖子”,以尽快走出受制于人的困境。国家重大科技基础设施需要做好顶层规划设计,全国一盘棋,避免一哄而上,重复布局。要发挥“集中力量办大事”的制度优势,在充分考虑学科领域均衡发展的同时,做好发展战略选择和优势学科布局,避免“撒胡椒面”。

合理的投入是实现发展目标的最基本保障。要实现追赶超越,作为支撑的基础设施就必须比对手更强,对设施发展的投入应该有较大幅度的增长。事实上,相比国外,我国现有的重大科学基础设施总投资规模,尤其是专用设施的投资规模偏小,限制了设施的领先性和对高水平人才的吸引,进而限制了重大原始创新成果的产生。要在继续加强对基础科学投入的同时,合理平衡不同学科领域,重点突破有影响力的关键领域。

对设施预先研究的前瞻布局不够,也是制约引领型、独创独有型设施发展的因素之一。国家有关部门也开始重视这一问题,已将少数预研项目列入“十四五”设施建设规划。但由于设施的原理性探索、概念性设计或关键部件的研制,可能难以预设明确的“交账”目标,往往不易获得支持。需要在国家有关部门支持预研项目的基础上,加强部门联动,完善不同类型预研的投入机制,在可能发生革命性突破的方向,加强原理性探索、概念性设计或关键部件研制等预研工作。

此外,国家重大科技基础设施的设计和建造有许多研究试验和技术攻关的内容,具有鲜明的工程和科研双重性。建议制定适应设施特点与发展规律的建设管理制度,充分考虑这种类型科研工作的特点与需求。要照顾大科学装置的工程技术人才在论文、独立成果上的特点,考虑项目、人才的一体化资源配置方式,培养设施所需的科学、技术、工程、管理复合型领军人才,重视设施建设和运行维护人才队伍,加大稳定支持力度。

(二)强化依托设施的建制化科学研究工作

要系统提升重大科技基础设施对基础研究、国家战略和高技术发展的服务支撑能力,加强开放共享,组织开展定向性、建制化的科学研究工作。一方面,要加强开放共享,做好设施升级和实验新方法、实验新技术的创新,提高设施本身的运行服务能力,为高水平科研活动提供更好的支撑。另外一方面,可以在科研用户自发性申请、零散式利用的基础上,找准国家发展中遇到的重大瓶颈科学问题,设计一些利用建制化组织优势,多设施、多用户协同创新的新机制。最近在中科院的部署和支持下,高能所与中科院金属所、中国钢研科技集团、中国航发沈阳发动机研究所、中国航发北京航空材料研究院等优势团队,围绕航空航天发动机叶片和复合材料、高端轴承、高铁轮轴等“卡脖子”技术,开展有组织、体系化的科学研究。技术人员和科研专家组成一体化团队联合攻关,利用散裂中子源、北京同步辐射装置、稳态强磁场实验装置等多个设施,共同制定实验方案,开发更精准的测试方法,推动实验方法创新、实验能力升级与科学问题研究的深入融合。

(三)加强高水平国际合作,发起国际大科学计划

重大科技基础设施一直是国际科技合作的重点领域,世界上很多设施本身就是国际大科学计划和大科学工程的产物。我国的设施建设也是如此,一些关键技术从国外引进或国内外合作研发,不少关键器件从国外进口,一些本土项目获得国际参与与贡献。2021年3月,“中国天眼”正式向全球开放,征集观测申请,共收到15个国家31份申请,14个国家的27份申请获得批准,并于2021年8月启动科学观测。这为世界注入了中国力量和中国贡献,充分彰显了中国科学家与国际科学界携手合作的理念。江门中微子实验获得国际实物贡献约3000万欧元,占比15%左右,共有境外16个国家和地区约300多位科学家参加。

我们要坚定开放合作,围绕重大科技基础设施的建设和运行,努力拓展合作范围、方式和渠道。要在项目遴选、评估、建设上有更多的国际参与和贡献,同时积极参加国际项目,广交朋友,培养人才,扩大影响,争取国际支持。希望有更多的重大科技基础设施开展高水平国际科技合作,也希望国家围绕建设高水平重大科技基础设施,选取有重大影响的“硬科技”项目,尽快发起实施若干国际大科学计划和大科学工程。

重大科技基础设施肩负着支撑科技强国建设的重要使命。我们相信,在党中央、国务院领导下,在国家有关部门的组织和支持下,我国将形成布局完备、技术领先、运行高效、创新有力、成果产出显著的国家重大科技基础设施体系,为建设世界科技强国、高水平实现科技自立自强做出更大的贡献。